• Create a Github Actions Workflow to run the application everyday at 5pm & store its run time log in the log file

  • You can consider this as application.

    import streamlit as st
    import pandas as pd
    import numpy as np
    
    # Function to load data
    @st.cache
    def load_data():
        data = pd.read_csv('sales_data.csv')
        return data
    
    # Function to transform data
    def transform_data(df):
        df['Date'] = pd.to_datetime(df['Date'])
        df['Year'] = df['Date'].dt.year
        df['Month'] = df['Date'].dt.month
        df['Sales_to_Profit_Ratio'] = df['Sales'] / df['Profit']
        df['Cumulative_Sales'] = df['Sales'].cumsum()
        return df
    
    # Function to extract summary statistics
    def get_summary_statistics(df):
        summary = df.describe()
        return summary
    
    # Main function to run the Streamlit app
    def main():
        st.title("ETL Process for Sales Data")
    
        # Step 1: Extract
        st.header("Step 1: Extract")
        data = load_data()
        st.write("Raw Data")
        st.write(data)
    
        # Step 2: Transform
        st.header("Step 
    
    
    • Sales_data.csv File
    Date,Product,Sales,Profit
    2023-01-01,Product A,100,20
    2023-01-02,Product B,150,30
    2023-01-03,Product A,200,40
    2023-01-04,Product C,250,50
    2023-01-05,Product B,300,60