Create a Github Actions Workflow to run the application everyday at 5pm & store its run time log in the log file
You can consider this as application.
import streamlit as st
import pandas as pd
import numpy as np
# Function to load data
@st.cache
def load_data():
data = pd.read_csv('sales_data.csv')
return data
# Function to transform data
def transform_data(df):
df['Date'] = pd.to_datetime(df['Date'])
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month
df['Sales_to_Profit_Ratio'] = df['Sales'] / df['Profit']
df['Cumulative_Sales'] = df['Sales'].cumsum()
return df
# Function to extract summary statistics
def get_summary_statistics(df):
summary = df.describe()
return summary
# Main function to run the Streamlit app
def main():
st.title("ETL Process for Sales Data")
# Step 1: Extract
st.header("Step 1: Extract")
data = load_data()
st.write("Raw Data")
st.write(data)
# Step 2: Transform
st.header("Step
Date,Product,Sales,Profit
2023-01-01,Product A,100,20
2023-01-02,Product B,150,30
2023-01-03,Product A,200,40
2023-01-04,Product C,250,50
2023-01-05,Product B,300,60